Spectral-Spatial Classification of Hyperspectral Images Using Approximate Sparse Multinomial Logistic Regression
نویسنده
چکیده
Abstract: We propose the sparse multinomial logistic regression (SMLR) model for spectral-spatial classification of hyperspectral images. In the proposed method, the parameters of SMLR are iteratively estimated from logposterior by using Laplace approximation. The proposed update rule provides a faster convergence compared to the state-of the-art methods used for SMLR parameter estimation. The estimated parameters are used for spectralspatial classification of hyperspectral images using a spatial prior. The experimental results on real hyperspectral images show that the classification accuracy of proposed method is also better than those of state-of-the art methods.
منابع مشابه
Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملHyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features
Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...
متن کاملSparse Representation Based Augmented Multinomial Logistic Extreme Learning Machine with Weighted Composite Features for Spectral Spatial Hyperspectral Image Classification
Although extreme learning machine (ELM) has been successfully applied to a number of pattern recognition problems, it fails to provide sufficient good results in hyperspectral image (HSI) classification due to two main drawbacks. The first is due to the random weights and bias of ELM, which may lead to ill-posed problems. The second is the lack of spatial information for classification. To tack...
متن کاملApplication of Softmax Regression and Its Validation for Spectral-based Land Cover Mapping
The presented Softmax Regression classifier is a generalization of logistic regression. It is used for multi-class classification, where classes are mutually exclusive. Implemented in a classification framework, it provides a flexible approach to customize a classification process. Traditional classification is focused with classifiers that can only be applied on the same dataset. The Softmax R...
متن کامل